Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Zhi-Gang Yin* and Heng-Yu Qian

School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail:
hengyuqian@yahoo.com

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.058$
$w R$ factor $=0.113$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

α-Ferrocenyl- N-(1-phenylethyl)benzylamine

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}\right)\right.$], possesses normal geometrical parameters. A network of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, one of which is bifurcated, helps to consolidate the crystal packing.

Comment

Functionalized ferrocene derivatives have recently been the subject of renewed interest owing to their promise in applications such as homogeneous catalysis (Sawamura \& Ito,1992; Togni, 1996; Borman, 1996) and the construction of carboncarbon or carbon-heteroatom bonds (Trost et al., 1996; Sesay et al., 1998). We report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

All geometrical values for (I) are normal. The two ferrocene rings are almost parallel [dihedral angle $=2.7(3)^{\circ}$]. Conversely, the dihedral angle between the two side-chain phenyl rings is $75.2(4)^{\circ}$.

In the crystal structure of (I), the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1), which involve both ferrocene rings ($\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$) and the phenyl ring ($\mathrm{C} 12-\mathrm{C} 17$) as acceptors (Steiner et al., 1995). These bonds result in the formation of a two-dimensional network (Fig. 2).

Received 26 September 2005 Accepted 14 October 2005 Online 22 October 2005

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2
Packing of (I), with dashed lines indicating $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. All H atoms except, $\mathrm{H} 7 A$ and $\mathrm{H} 15 A$, have been omitted for clarity.

Experimental

The method of David et al. (1990) was followed; an equimolar mixture of benzoylferrocene and 1-phenylethylamine in dry toluene was refluxed for 24 h and afforded a crude mixture in 85% yield. The mixture was reduced by sodium borohydride in methanol at 273 K for 20 h (see scheme). The product was purified by chromatography on silica gel (petroleum ether/dichloromethane, 2:1) to give a 65% yield and recrystallized from dichloromethane/hexane to yield orange blocks of (I). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3325, 3022, 2962, 1742, 1599, 1449, 1102, 1021, 699; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.2-7.36(m, 10 \mathrm{H}), 4.57(s, 1 \mathrm{H})$, $4.18(s, 1 \mathrm{H}), 4.08-4.10(m, 3 \mathrm{H}), 4.01(s, 5 \mathrm{H}), 3.76(d \times d, 1 \mathrm{H}, J=6.2$ and 8.8 Hz$), 1.93(s, 1 \mathrm{H}), 1.39(d, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$. Analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FeN}$: C 75.95, H 6.33, N 3.54%; found: C 75.46 , H 6.58, N 3.02%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}\right)\right]$
$M_{r}=395.31$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=8.0109$ (16) £
$b=8.7198$ (17) A
$c=28.718$ (6) \AA
$V=2006.0(7) \AA^{3}$
$Z=4$
$D_{x}=1.309 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
 Absorption correction: multi-scan
 (SADABS; Bruker, 2000)
 $T_{\min }=0.863, T_{\max }=0.875$
 9952 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 1875 reflections
$\theta=2.1-24.6^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, orange
$0.20 \times 0.19 \times 0.18 \mathrm{~mm}$

3866 independent reflections
2675 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-35 \rightarrow 35$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.113$
$S=0.99$
3866 reflections
244 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1578 Friedel pairs
Flack parameter: 0.08 (3)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1, C g 2$ and $C g 3$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 5, \mathrm{C} 6-\mathrm{C} 10$ and $\mathrm{C} 12-\mathrm{C} 17$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots C g 2^{\mathrm{i}}$	0.98	3.20	$3.895(5)$	129
$\mathrm{C} 7-\mathrm{H} 7 A \cdots C g 3^{\mathrm{i}}$	0.98	3.00	$3.749(5)$	134
$\mathrm{C} 15-\mathrm{H} 15 A \cdots C g 1^{\mathrm{ii}}$	0.93	2.85	$3.744(7)$	161
Symmetry				

All H atoms were placed in calculated positions ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Center of Test and Analysis, Zhengzhou University, for support. The work was supported by the Outstanding Youth Fund for Henan Natural Scientific Research (No. 0412001100) and the Startup Fund for PhD of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001).

References

Borman, S. (1996). Chem. Eng. News, 22, 38-40.
Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
David, D. M., Kane-Maguire, A. P. \& Pyne, S. G. (1990). J. Chem. Soc. Chem. Coтттии. pp. 889-990.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sawamura, M. \& Ito, Y. (1992). Chem. Rev. 92, 857-871.
Sesay, S. J., Williams, J. M. J. (1998). Adv. Asymm. Synth. 3, 235-271.
Steiner, T., Starikov, E. B., Amado, A. M., Teixeira-Dias, J. J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1321-1326.
Togni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475-1477.
Trost, B. M., Vranken, D. L. (1996). Chem. Rev. 96, 395-422.

